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Abstract 
This paper discusses the capability assessment of ALOS data, particularly the AVNIR-2 and PRISM images to support 
various mapping activities.  The studies were carried out with the support from The Remote Sensing Technology Center of 
Japan (RESTEC), and coordinated by LAPAN Indonesia.  In order to assess the ALOS data capability, several image 
processing and visual interpretation techniques were applied, including radiometric and geometric corrections, image fusion, 
visual interpretability for morphological/fisiographic features, vegetation index transformation, multispectral classification 
for land-cover/land-use mapping, image segmentation, and critical land assessment.  The results show that ALOS data is very 
supportive in both digital and visual image-based mapping at local up to sub-regional scale . 
 
 
 
1. Introduction 
 
ALOS gives relatively wide range of spectral bands, starts 

from blue, green, red to near infrared and microwave region.  
In addition, a higher spatial resolution image in panchromatic 
mode is also available, making the produced images ready for 
various applications using both visual and digital interpreta-
tions, and using both optical and microwave analyses.  The 
availability of those types of imagery requires a more compre-
hensive assessment on their advantages and disadvantages, 
particularly for mapping and updating of maps at correspond-
ing scales in Indonesia.  
 
The aims of this study was to assess the capability of ALOS 
data in supporting mapping and map updating activities at 2.5 – 
15 m spatial resolutions, which are more or less equal to 
1:10,000 up to 1:100,000 optimal scales.    
 
2. Materials and Methods 
 
In order to obtain a better understanding of the advantages and 
disadvantegs of ALOS data , a series of image processing and 
visual interpretation activities were carried out, and some of 
them involved GIS processing as well.  Geometric and radio-
metric corrections were applied as prerequisite processing.  
Visualisation in terms of image fusion were applied to produce 
images, which would be used as a basis for visual interpretation.  
Spectral analyses using multispectral classification and veget-
ation index transformations were carried out in order to 
generate land-cover and vegetation maps.  Object-oriented 
image classification was also run in order to compare the result 
with the pixel based classification.  Furthermore, two methods 
of critical land mapping were applied in order to demonstrate 
the capability of the data in environmental applications. 
 
2.1. Materials  
 
Several sets of ALOS imagery covering Central Java and 
Yogyakarta Special Province were chosen.  The ALOS data 
consists of PRISM and AVNIR-2.   In addition to the ALOS 
image datasets, this study also made use of SRTM data (90 m 

spatial resolution), Landsat ETM+ (30 m spatial resolution), 
and topographic maps at 1:25,000 scale. 
 
2.2. Methods 
 
The following paragraphs  briefly describe each method 
employed in this study. 
 
2.2.1. Radiometric Correction 
 
Radiometric correction focused on the conversion of pixel 
values (digital numbers/DN) to at sensor radiance.  In some 
instances, at surface reflectance was needed. (Chander & 
Markham, 2003).  By this method, the unitless DN was trans-
formed into values in Wm-2 µm-1.  The radiometric correction 
is necessary for image analyses involving spectral transform-
ation and multitemporal/multisensor analyses.  However, such 
correction is not compulsory for multispectral classification of 
a single scene (Mather, 2004;  Jensen, 2005).  The correction 
was also used to observe the consistence in spectral patterns.  
 
2.2.2. Geometric Correction 
 
Geometric correction was performed using standard procedure 
involving ground control points for image-to-map and image-
to-image correction.  The transformation polynomial order 
could be first, second or third, depending on the terrain rough-
ness of the study area, by which the higher order applies for 
rougher terrain.  In line with the radiometric correction purp-
oses, a nearest neighbour interpolation was mostly used in 
order to keep the pixel values as close as possible to the 
original data.  However, a cubic convolution might also be used 
for generating smoother image, which was used as basis for 
visual interpretation.  Bakosurtanal topographic map (RBI) at 
scale of 1:25,000 was used as a reference.   
 
2.2.3.  Image Fusion 
 
Image fusion involved all-optical image fusion (ALOS 
AVNIR-2 + PRISM; ALOS AVNIR-2 + Landsat ETM+), 
ALOS AVNIR-2 + SRTM  fusion, and ALOS AVNIR-2 + 
PALSAR fusion.  The image fusion made use of multireso-
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